大数据时代的数据中心如何实现运维?绿色数据中心

2013-09-10    来源:IT专家网    编辑:佚名
大数据长期存在于各个领域,而近年来,随着互联网和信息技术的发展,大数据成为当下最火爆的时尚概念之一。

  “大数据时代”这一概念最早是由著名咨询公司麦肯锡提出,其对“大数据时代”做出这样的定义:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来”。大数据长期存在于各个领域,而近年来,随着互联网和信息技术的发展,大数据成为当下最火爆的时尚概念之一。

  大数据存在具有巨大的潜在价值

  对于大数据的特点,业界通常用Volume(数据体量巨大)、Velocity(数据类型多)、Variety(速度要求高)、Veracity(价值大、密度低)来概括。

  “大数据”正在对每个领域都造成影响,在商业、经济和其他领域中,决策行为将日益基于数据分析做出,而不是像过去更多地凭借经验和直觉。而在公共卫生、经济规划、城市管理等领域,“大数据”的价值已经开始崭露头角。

  据麦肯锡预测,大数据将为美国医疗服务业每年带来3000亿美元的潜在增加值,为欧洲的公共管理每年带来2500亿欧元的潜在价值,为位置服务产业带来6000亿美元的潜在年收入。零售商充分利用大数据可实现运营利润增长60%,制造业充分利用大数据可降低设备装配成本50%。

  在中国,伴随着各级政府发布大数据产业规划及相关政策,大数据不但成为IT业界内的“宠儿”,更将风潮煽动到其他各领域。现代社会,谁能离得了网络和信息呢?

  良好的大数据运作离不开可靠的后台支撑

  大数据的收集、整理、分析和应用,需要依赖高度可靠的软硬件支撑体系。作为大数据管理的重要集聚地,数据中心能否良好运转关系甚大。当大量的生产和经营数据集中在数据中心,一旦数据中心故障而导致关联中断、数据丢失等问题,或许所造成的损失会达到天文数字。

  随着数据中心IT架构不断扩展,服务器、存储设备的数量越来越多,网络变得更加复杂,如果确保数据中心业务不间断、运营更高效,是数据中心管理者的核心任务,也成为数据中心运维人员所必须应对的挑战。

  对于这些体量超大的数据中心,原有的运维思路和运维方法已难以满足其海量数据计算、存储、应用和安全等多种职能的需求。一方面是成千上万台IT设备,以及各种软件系统;另一方面繁多复杂的业务应用,数据中心需要借助先进的自动化运维管理模式来实现大体量系统管理。

  天玑科技自主研发的数据中心运维管理平台已经在多家大型数据中心投入使用,良好地实现了数据中心软硬件系统自动化、可视化、实时化管理。当传统的人工巡检无法应对数量庞大的IT系统时,自动巡检工具能够更为高效地实现目标。而远程监控、自动预警等功能则可以实时反应系统现状,避免因滞后而造成的损失。

  这套数据中心运维管理平台遵循ITIL的最佳管理实践,为用户提供基于IT运维流程、以服务为导向的业务服务管理和IT运维管理支撑,其功能涵盖网络拓朴管理、设备管理、可用性管理、性能管理、配置变更管理、事件管理、告警管理、日志管理、网络流量管理和操作审计等方面,大大超出狭义网管软件的范畴,能够帮助数据中心实现管理规范化、流程标准化和监控自动化。作为完整的平台而非单点工具,用户可以在一个界面中了解所有终端的状态,进行统一或分级的管理。

  目前,在电信运营商、金融、互联网等领域,天玑科技的运维管理平台满足大型数据中心统一的自动化监控、自动化配置和自动化维护等需求,并且还能够扩展支持云计算轻量级自动化维护监控体系,证明了其先进的管理性能和服务价值。

1
3