当前位置:首页 > 行业资讯 > 正文

大数据:如何改造传统数据处理架构?

2015-03-18 机房360 编辑:邹海燕

  IT领域开始采用基于Hadoop的大数据技术框架对视频文件进行存储和计算,使得城市各部门的工作人员可以实现对视频的快速检索和智能分析。

  视频监控的大数据平台一般以分布式集群的方式进行建设。分布式集群能够对数据处理进行负载均衡,同时,也便于未来一段时间进行扩展。而扩展的过程也无需重新部署系统,只需增加集群节点即可提升大数据平台的整体性能。

  视频监控的大数据平台采用分布式计算,同时结合内存加速、负载均衡、本地处理,以提供高效的数据分析和挖掘能力。视频监控大数据处理过程中的存储则采用了分布式存储方式,以提高读写速度和扩大存储容量。在数据存储方面,大数据平台需要考虑以下3个方面:一是哪些数据需要保存到大数据平台上;二是如何对原有系统进行改造,原有系统中已存在的数据该如何处理;三是如何保证数据的可靠性。

  实践证明,基于大数据框架改造的传统视频处理系统架构能焕发出新的活力。首先,架构更加灵活,伸缩弹性更大。一些城市的中大型项目,由于起点的差异,缺乏视频监控架构的顶层设计,为后期的扩容升级增大了难度。在建设初期,IT规划者如果能引入基于大数据的架构,就会为未来的扩张打开通路。

  其次,可以以廉价通用的硬件产品应对视频监控数据的爆发性增长。在面向大数据的架构中,IT规划者后期可以根据视频监控业务的部署需要,设立多个HDFS(Hadoop分布式文件系统)集群,采集的流数据会被划分成段,并分布于各个数据节点上。更为重要的是,这些数据节点可以采用廉价通用型的硬件,由软件技术保证其高可靠性。这种方式避免采用传统高端硬件模式,大大降低了大数据平台的后续运维成本。

  最后,可以通过高速并行计算实现智能分析和数据挖掘。对于城市管理者来说,面对海量的视频监控数据,传统人工和串行的数据筛选方式已不能满足搜索和分析要求。基于大数据的架构就是将海量数据分解为较小的更易访问的批量数据,在多台服务器上并行分析处理,从而大大加快视频数据的处理进程。

大家都爱看
查看更多热点新闻