大数据意味着大网络:亚太地区企业如何从大数据分析中获益
2015-04-17 机房360 编辑:litao984lt
回到亚洲,该地区的企业和政府将继续投资于大数据基础设施项目,以便将自身打造成为大数据创新项目方面的旗舰城市,乃至成为世界创新前沿。例如,香港政府计划为创新及科技基金注资50亿港币,以支持大数据分析技术的研发,同时还将提供更好的服务质量,促进经济社会发展。同时,新加坡政府最近宣布的智能国家倡议计划将创建一个全国性的传感器网络和数据分析能力,通过有效的数据收集和共享,提供更好的态势感知能力。
在过去的一年,通过对大数据平台乐观的投资,亚太地区的大多数企业现在已经收集了大量的数据,并真正通过有效的消费者行为分析,促进制造工艺流程,产品性能的优化。IDC分析师预计,2015年,亚太地区大数据项目支出将增长34.7%。IDC指出,这些开支将重点关注于从已经作出的投资获得回报——即如何分析这些海量数据,从中获取商业价值和竞争优势。通过对结构化和非结构化大数据进行智能分析,所有行业的公司可以更好地预测行业的发展趋势和客户的喜好,给他们带来巨大的竞争优势。而如果他们无法做到这一点,被淘汰将不可避免,IT消费也将转向别处。
尽管企业在数据收集方面投入了巨资,但他们还没有尽可能多的将他们的想法和理念付诸这些需要大规模分析的海量计算和存储能力,这远远超过了该地区的典型数据中心的能力。创造越来越大的数据中心的成本是昂贵的,而且需要一个非常长的筹备时间。解决方案就是多个数据中心携手合作,利用汇总计算和存储能力的优势,以满足正确分析大数据的需要。但是,今天位于不同地理位置的数据中心的网络的“刚性”设计和部署是不同的,这意味着访问其他数据中心将受到严重限制。
亚洲企业需要让他们的网络与数据中心运营商虚拟化的网络实现互连,创建一个“无墙的数据中心”,汇集物理性质不同和地理上分散的数据中心,使其成为一个强大的大数据分析计算和存储平台,本质上是无限的。
最先进的计算和存储技术,结合改进的智能内置的网络连接,允许分布在不同的地域的数据中心能够无缝地协同工作。一个统一的大数据中心的网络架构必须将结合网络的可编程,可扩展的带宽,低延迟性,简单,以及互补的网络功能,如压缩,加密,优化,实时监测。
今天,大部分的大数据都是非结构化的,因此不能很容易的适应常规数据库管理系统,这使得在许多情况下,对其分析是不可能的。开源软件,如Hadoop允许数据跨多个数据中心分离成数据块,运行并行分析,在这之后,可以重新组合以提取一组统一的分析结果。分离的大数据通过连接到它们的灵活的网络,将其发送到不同的远程数据中心。
存储商品化和计算硬件的结合,再加上开源软件和灵活的网络互联数据中心,使大数据分析的承诺成为现实,而不再只是一个过度炒作的营销术语。