不要盲目崇拜那些所谓的大数据神话
2015-07-02 机房360 编辑:佚名
同时,beyer提出了八个大数据神话:
1.大数据起始于100tb。不要再去寻觅大数据标准尺寸了,因其并没有标准尺寸。“大数据是对数据的处理,而不是数据的大小,”beyer说。
2.想要大数据就必须更换基础设施。“如果我因为有新的需求就决定改变整个基础架构,那我是把之前所有的东西都当做了赌注,”beyer说。他的经验教训是什么?“你要搞清楚,(基础设施)成熟度牺牲的风险是否值得。”
3.百分之八十的数据是非结构化的。这可能是最经常被引用的大数据统计了,但根据beyer所说,其并不准确。“世界上最大的信息资产是机器数据。因为其并未相互关联就说它们非结构化绝对是个谎言。机器数据是结构化的数据。”顺便说一句,这些大量的机器数据,往往是重复的信息,确认了一切的正常。“这就是机器数据通常所表达的,”他说。
4.工具将取代数据科学家。放心,所有花在吸引,拉拢,获取数据科学家上的钱都不会白花,beyer说。“工具是一种工程,工程是对已经发现的事实的重复利用。而科学是去发现新的事实。”工具不会取代数据科学家-至少在工具可以自行复制和发展之前不会。
5.更多的数据就可以解决数据质量的问题。“数据质量越低,答案质量就越低,”beyer说。首席信息官们应该关注数据质量。以通过手机收集的气质地理定位数据为例,有些人把手机等同于真实的个人,他说。然而,手机可以被不小心留在办公室,或者gps功能可以在任何时间点被关闭。“手机不是人,”beyer说。
6.实时只是速度更快而已。实时操作,并不意味着加快了当前数据的摄入清理和分析过程,beyer说。而是“确保数据收集和决策之间的间隔越短越好,”他说。此外,大多数企业数据是不需要实时操作的。不过,实时操作也的确带来很多益处。在政府工作闭塞化的今天,苏州政府使用大数据魔镜将政府工作情况实时可视化展示给公民,不得不说是公共管理领域的一个好例子。
7.数据量优于专业知识。那些认为可以简单地不再管业务流程的人,请再想一想。这是因为,“一位好的数据科学家必须在某一时刻被叫停”,beyer说。如果没有业务流程,数据科学家将不断不断不断的进行下去而不能提供商业价值。需要有人帮忙划清界线。
8.数据模型没有用。这一论断很绝对。不过,beyer澄清说,任何数字资产里的东西都有其数字模型。“我们不会因为大数据就舍弃模型,”他说。
数据神话的观点在很多人心里已经根深蒂固,要把大数据发展壮大,消除对于这些数据神话的盲目崇拜是非常必要的。