数据质量高度决定BI应用深度
2009-12-21 国脉电子政务网
中国通信行业的BI系统建设序幕在2002年正式拉开,这一年中国移动下发了经营分析系统1.0规范,中国电信、中国联通开始启动了操作型CRM系统的建设。2004年中国移动在经营分析1.0规范上增加了数据集市试点,中国电信开始下发数据仓库规范与经营分析规范,中国联通总部发布指标规范和指标上传规范,由此,中国通信行业BI系统的建设全面铺开。这几年间,中国通信行业的BI系统在建设过程中也一直在不断探索,进行了很多BI应用的尝试,实施的过程中投入了相当的资源,不可谓不重视,但大多应用只限于一些案例的尝试,能进行大范围的推广并给企业带来相应收益的并不多,原因是多方面的,最根本的原因还在于支撑这些应用的数据业务基础的质量并没有达到相应的高度。
数据质量问题的产生,有很多方面的原因,如各地的主要业务支撑系统建设方式不统一,上业务编码体系缺失,业务数据表达方式的一不致等等。再比方一些运营商,在启动信息化建设之前就有大量的用户存在,这些用户往往只收集了一些必要的安装与计费信息,与现代的CRM管理要求的数据要求有一定的差距。在支撑深度应用的时候,找出一些质量好的样本数据是比较容易的,但一样进行应用扩展,这样的数据基础,往往难以为继。
在总结联创科技参与建设的各运营商BI系统中,我们发现数据质量较好的系统,在管理方面有以下共同点:
·技术业务规范相匹配,细则清晰。
·建立基于BI系统的数据考核体系,使得系统数据得到充分应用。
·采用多种主动沟通手段,完善重点客户资料。
·有鞍严格的系统考评体系,保证系统建设方向。
随着C网业务并入中国电信,联通与网通合并,铁通融入移动,中国通信行业迎来了全业务时代,至此,中国通信行业三足鼎立的格局正式形成。从业务分析角度来看,个人用户的行为更容易进行细分和定制针对性的方案,因此,全业务时代对BI系统将提出更高的要求,需要针对个人用户的行为特征分析,定制针对性的细分方案,提供个性化服务方案,满足个人用户的需求。而在中国移动获得固网牌照后,各运营商除了个人业务之外,也会更多的考虑将企业的优势业务进行组合,创造出更多的产品来吸引用户,因此,移动业务的数据与传统固网数据结合的分析,将是中国通信行业BI系统未来的一个应用重点。深度的BI应用需要高质量的数据,应该如何提升通信行业BI系统的数据质量?针对现状,联创科技有以下建议:
加强数据集中与管理环节,建立全面的数据中心
建立一个全面的数据中心,是解决数据质量问题的一个好方案,建立全面的数据中心,需要从数据的集中与整理方面开始,可以从以下几个方面入手:
·加强与业务人员沟通,在业务需求下发初期,了解相关部门的业务分析需求,理解业务特性,提早做好数据集中与理解规划。
·在系统规划环节及建设的过程中,请BI系统相关人员参与技术方案的评审,这样可以在系统建设的过程中,可以在满足业务支撑需求的基础上,也同步考虑数据支撑需求。
·建立数据需求跟踪体系,对于暂时不能满足的数据需求,需要纳入跟踪流程,与业务部门沟通分析后续需要使用的可能性,若需要使用,则尽快集中整理。对于业务使用过的需求,也进行跟踪反馈,以便及时发现数据问题,进行数据修正。
以企业考核指标体系为纲,建立企业级的业务规则体系
如某运营商,BI系统目前提供的多数指标只是应用于常规与专题分析,考核各地业务完成情况的指标仍旧来源于现有的报表体系,这样就导致了相关的市场分析人员将BI系统做为了一种分析数据的补充来源,而不是主要来源,部分BI系统中无法满足的数据,还可以在其它的业务支撑系统中获得支撑,因此目前的BI系统应用的覆盖面还较有限,没有形成一套比较完整的分析体系。
运营商每年有相应的业务考核指标,对于各地业务部门来说,考核就是个指挥棒,指引着业务策略的方向。在这样的情况下,要想达到企业“精细化营销”的目标,就需要运营商从长远发展的角度考虑,从高层次建立既能满足相关考核指标,又能与数据应用相结合的业务规则体系,各地在实施相关的业务规则时,也需要确定具体的实施规则,否则目前各地的业务与实施规则不统一,业务表达与技术表达不一致的情况还将继续存在下去,这将极大制约BI系统应用的深度,从而影响BI系统发展空间。
建立完善的数据质量跟踪与考核体系,确保数据质量一般在BI系统中,一个比较复杂的应用数据生成可能都需要经过几个环节:数据抽取→数据清洗转换→数据沉淀→数据共性抽取→应用生成→应用展现。
对于BI系统来说,在每个环节都布署相应的数据监控是非常重要的,从理想状态来说,所有的问题都在前期环节发现是最好的。但在实现过程中,需要考虑数据监控的成本与实际的效果。
对数据质量体系的建立,联创科技有如下建议:
·建立流程及程序断点监控,确保各环节间数据一致。
·建立业务指标监控体系,并可以根据不同的业务时期,不同的产品的生命周期进行调整相应的阀值。
·建立质量考核体系,设立相应考核指标,要求数据“谁提供、谁负责”确保数据质量。
·建立专门的数据质量监督小组,并不断完善数据监督、发现问题后跟踪反馈处理的流程机制,保证数据质量的稳定提升。
数据质量的提升是一个长期的工作,也需要各方不断总结和努力,目前运营商都已经开始了一些数据质量提升的工作,但涉及到的数据深度和广度还远远不够,目前的重点应用还集中在统计层面,成规模化的深度分析应用还远远不足,面对市场竞争的加剧,各运营商需要加快各地区BI系统数据质量提升的步伐,才能实现“精细化营销”的业务目标。