大数据时代 数据变“脏”原因众多行业资讯
在当前的互联网领域,提及大数据,相信很多人都了解,大数据已经成为了备受瞩目的“大明星”,与此同时,大数据的应用层出不穷,正改变着公共决策、企业管理、市场营销以及生活的方方面面。
我们知道,大数据要发挥作用,有一个前提就是数据是好的数据。所有数据都是好的么?当然不!因此大数据时代还需警惕“脏数据”。什么是“脏数据”呢?简单来说,就是那些虚假的数据,那些未能反映真实情况、扭曲了真实情况的数据。
那么,“脏数据”是怎样形成的呢?
KPI、利益诱惑,导致主动弄脏数据
淘宝卖家信用等级制度是一个很好的创新,推动了诚信网络购物环境的构建。信用的等级主要依据是交易成功后买家的评分。由于信用等级在买家购物时有着巨大的指导作用,所以卖家都颇为重视自己的等级。这也导致该制度从诞生的第一天起就伴随着“脏数据”。部分卖家挖空心思、弄虚作假争取高的等级:有的采用虚假交易的方式,自己卖给自己,然后给予这次交易较高的评分;“刷信用”、“刷钻”俨然成了一门生意,有不少专门做这个生意的网站;职业差评师也应运而生,很多恶意买家专门以给网店差评为手段向网店店主索要钱财。
微博粉丝数体现了一个人的影响力,同时也具有商业价值。这里也有“脏数据”——僵尸粉,即虚假粉丝、永远沉默的粉丝。自己可以注册多个微博来关注自己;花钱也可以买到“关注”,这些粉丝通常是由系统自动产生的恶意注册用户。
终端销售的代理商为了套取运营商的佣金,用一个虚拟的串号录入系统,自己卖给自己;电信业务销售代理商为了完成运营商下达的任务量,将手机号卡从系统里开出来囤着,放在抽屉里慢慢卖。这些,都能产生巨大的“脏数据”。
评论:
大数据带来的价值是众所周知的,这些价值已经深入到各个领域,然而,这并不代表所有的数据都是好数据,“脏数据”也不容忽视,“脏数据”的产生原因来自方方面面,若想避免,需要企业和社会各界的共同努力。